

Disease Models in Oncology: Optimizing Trial Design to Maximize POS

René Bruno, Laurent Claret Certara Strategic Consulting

ASCPT Pre-conference Quantitative Translational Approaches in Oncology March 8, 2016

Outline

- Oncology drug development challenges
- A drug-disease modeling framework
 - Longitudinal tumor size models
 - Tumor growth inhibition metrics
 - Survival models
- Rena cell carcinoma case study
- Discussion

Oncology drug development

- Expedited programs
 - Little learning from early clinical trials to inform late studies
 - High failure rate in late Phases
 - Large number of new agents and even larger number of combinations...
- Empirical selection of dose and dosing schedules in Phase I
 - Maximum tolerated dose (MTD)
 - Pharmacologically active dose based on biomarker responses specific to the mechanism of action
 - OK to establish proof of mechanism but not mature for dose selection
 - Cohort expansions…
- Phase II program not informative
 - Design
 - Limited to establish proof of concept; Very few randomized Phase IIb dose-ranging studies
 - Primary clinical endpoints (ORR, PFS) poorly informative
- Phase III: High failure rate
 - > 50%
- Filing: Dose justification...
- Post-marketing requests...
 - To confirm dose, optimize dosing...

CERTARA

A drug-disease modeling framework to optimize trial design to maximize POS

Modified from Bruno and Claret, Clin Pharmacol Ther, 86, 136-138, 2009

TGI = Tumor growth inhibition ORR: Objective response rate TTPD: Time to progressive disease PFS: Progression free survival

Drug-specific TGI models

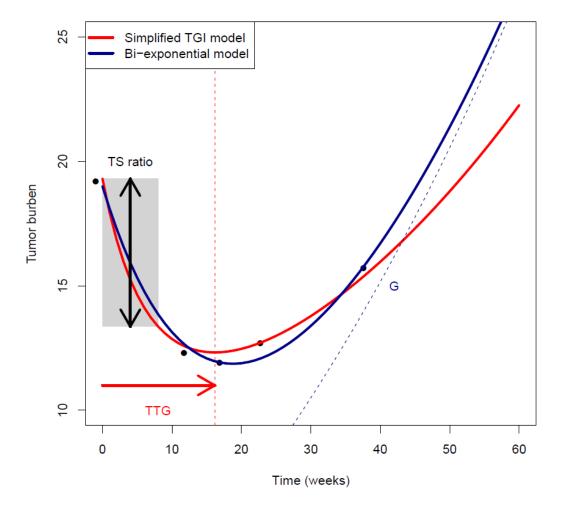
- Semi-mechanistic exposure-driven TGI models (simulation)
 - Tumor growth, exposure driven drug effect, resistance appearance¹⁻⁵
- Empirical models (analysis)
 - Simplified TGI model (assumes constant exposure)⁶⁻⁷
 - Linear growth plus exponential shrinkage⁸⁻⁹
 - Exponential growth and shrinkage¹⁰

¹Claret *et al. ASCO* 2006 and *PAGE* 2008 ²Claret *et al. J. Clin. Oncol.* **27**:4103-8, 2009 ³Tham *et al. Clin. Cancer Res.* **14**:4213-8, 2008 ⁴Stein *et al. BMC Cancer* **12**:311, 2012 ⁵Ribba *et al. Clin Cancer Res* **18**:5071-80, 2012 ⁶Claret *et al. PAGE* 2012 ⁷Claret *et al. J Clin Oncol* **31**:2110-14, 2013 ⁸Wang *et al. Clin Pharmacol. Ther.* **86**:167-74, 2009 ⁹Maitland *et al. Clin Pharmacol Ther*, **93**:345-51, 2013 ¹⁰Stein *et al. Clin Cancer Res*, **17**:907-17, 2011

Recently reviewed in Ribba et al. *CPT:PSP* (2014) 3, e113; doi:10.1038/psp.2014.12.

Models for clinical endpoints (overall survival)

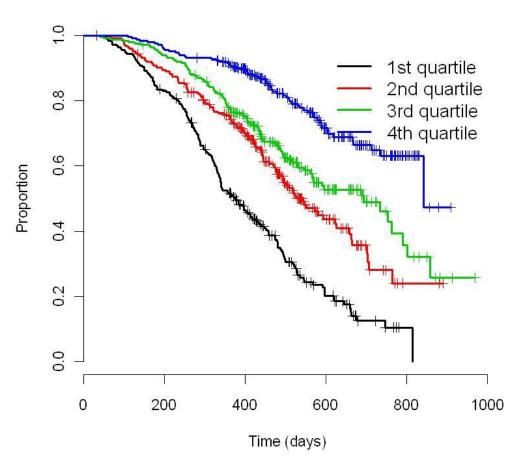
- Survival time distribution is estimated (parametric model) as a function of prognostic factors and predictors
- Drug independent, disease specific model
 - TGI metric is used as a biomarker to capture drug effect
 - Historical Phase III studies can be used to develop the models
 - Overall survival models have been developed for MBC¹, CRC^{2,3}, pancreatic cancer, ovarian cancer⁴, H&N carcinoma, multiple myeloma⁵, non-hodgkin lymphoma, gastric cancer⁶, renal cell carcinoma⁷, NSCLC⁸⁻¹⁰ and GIST¹¹
- A few cases of external evaluations are available^{2,5,12}
 - More are needed


¹Claret *et al.* ASCO 2006 (abstract 2530)
²Claret *et al.* J Clin Oncol **27**:4103-8, 2009
³Claret *et al.* J Clin Oncol **31**:2110-14, 2013
⁴Lindborn *et al.* ACoP, 2009
⁵Jonsson *et al.* CPT:PSP **4**:711-19, 2015
⁶Quartino *et al.* PAGE 2013
⁷Claret *et al.* Cancer Chemother Pharmacol **76**:917-24, 2015

⁸Wang et al *Clin.Pharmacol. Ther.* **86**:167-74, 2009 ⁹Claret *et al. Clin. Pharmacol. Ther.* 95, 446-451, 2014 ¹⁰Bruno *et al.* Proc ASCO 2013, abstract e19103 ¹¹Hansson *et al. CPT:PSP*, **2**:e8, 2013 ¹²Claret *et a*. Clin. Pharmacol. Ther. **92**:631-4, 2012

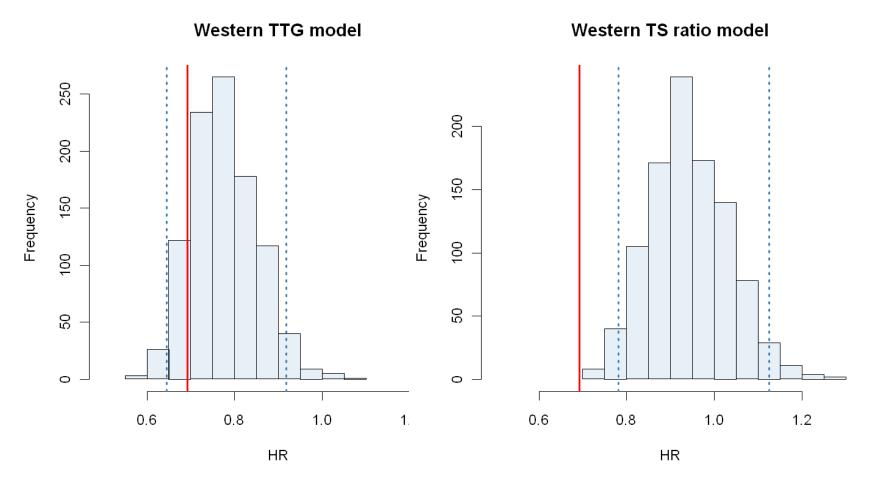
Recently reviewed in Bruno et al. *Clin. Pharmacol. Ther.* 95, 386-393, 2014.

Tumor growth inhibition metrics



Claret et al. J. Clin. Oncol., 31:2110-2114, 2013

TGI metrics are well correlated with OS e.g. TTG in CRC


Claret et al. J. Clin. Oncol., 31:2110-2114, 2013

OS by quartiles of TTG

Data from two randomized phase III studies of bevacizumab plus chemotherapy in the 1st-line treatment of CRC in 813 Western patients (Hurwitz, 2004) and in 203 Chinese patients (Guan, 2011)

Correlation with OS is nice but not enough: The TGI metric should capture treatment effect (HR) too...

Colorectal cancer OS model assessment (bevacizumab hazard ratio):

The model with TTG does the job when TS ratio (week 8 to baseline ratio) does not

Claret et al. J. Clin. Oncol., 31:2110-2114, 2013

© Copyright 2015 Certara, L.P. All rights reserved.

CERTARA

Modeling and simulations relating overall survival to tumor growth inhibition in renal cell carcinoma patients

Laurent Claret¹ · Francois Mercier^{2,3} · Brett E. Houk⁴ · Peter A. Milligan⁵ · Rene Bruno¹

Cancer Chemother Pharmacol DOI 10.1007/s00280-015-2820-x Published online: 22 July 2015

Metastatic renal cell carcinoma (mRCC) OS model

• To leverage historical data and assess the link between TGI and OS

Study	Phase	Line	N*	N _{eval} **	Treatment groups	
Temsirolimus 1098	III	1st, poor prognosis	501	496	Temsirolimus, interferon, temsirolimus+interferon	
Sunitinib 1006	Ш	2 nd , refract ²	106	105	Sunitinib 50 mg qd 4/2	
Sunitinib 1034	III	1 st	725	709	Interferon, Sunitinib 50 mg qd 4/2	
Sunitinib 1065	II	1 st	289	267	Sunitinib 50 mg qd 4/2, and 37.5 mg qd cont	
Sunitinib 1072	Ш	1 st and 2 nd	51	51	Sunitinib 50 mg qd	
Sunitinib 1110	NA	Long term extension	118	113	Sunitinib long term safety and tolerability	
Axitinib 1012	Ш	2 nd refract ²	52	48	Axitinib 5 mg bid	
Axitinib 1023	П	2 nd , refract ¹	62	50	Axitinib 5 mg bid	
Axitinib 1032 (AXIS)	III	2 nd	714	651	Axitinib 5 mg bid, Sorafenib 400 mg bid	
Axitinib 1035	П	2 nd , refract ²	64	62	Axitinib 5 mg bid	
TOTAL			2628	2552 (97.1%)		

*N: patients with tumor size data

**Neval: Patients "evaluable" with at least one post-baseline tumor size measurement in addition to baseline

¹ sorafenib refractory

² cytokine refractory

CERTAR

TGI model

• TGI data (sum of longest diameters) adequately described using a previously published model (Claret L. et al. JCO, 2013)

$$Y_{ij} = \begin{cases} Y_{i0} \cdot e^{KL_i \cdot t_{ij}} & \text{before treatment} \\ \\ Y_{i0} \cdot e^{\left(KL_i \cdot t_{ij} - \frac{KD_i}{\lambda_i} \cdot \left(1 - e^{-\lambda_i \cdot t_{ij}}\right)\right)} & \text{afterward} \end{cases}$$

$$\begin{split} Y_{ij} &= \widetilde{Y}_{ij} + \epsilon_{ij} ,\\ \theta_i &= \theta \cdot e^{\eta_i},\\ \eta_i &\sim N(0, \omega^2), \, \epsilon_{ij} \sim N(0, \sigma^2) \end{split}$$

• The purpose of this model is to derive patient-level TGI metrics: early tumor shrinkage (ETS) at week 8, 10, 12, or time to growth (TTG)

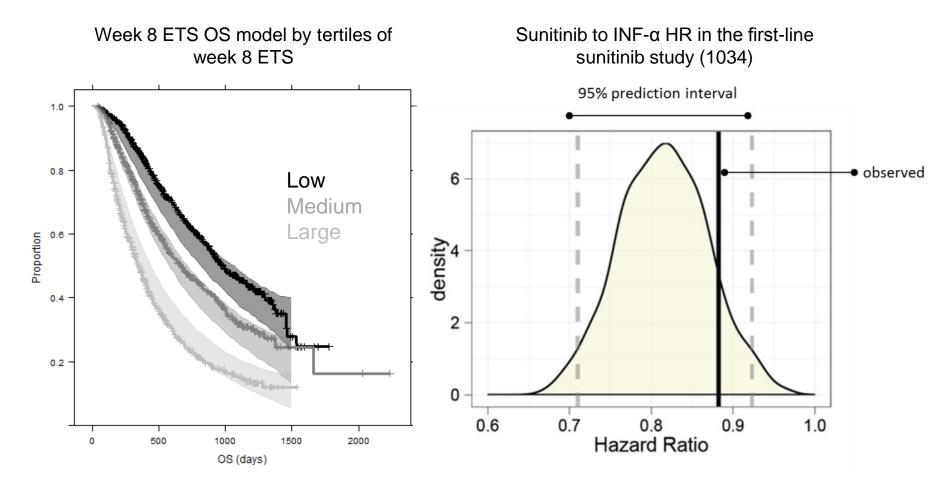
week x ETS_i =
$$\frac{Y_{\text{Weekx,i}}}{Y_{i0}}$$
 TTG_i = $\frac{\log(\text{KD}_i) - \log(\text{KL}_i)}{\lambda_i}$

OS model

- OS parametric model built by backward stepwise elimination
 - Lognormal distribution
 - Drug effect captured by week 8 ETS

	Parameter	Estimate (SE)	p-value
Drug effect –	(Intercept)	8.07 (0.270)	<0.001
	• Week 8 ETS	-1.99 (0.135)	<0.001
	Hemoglobin (g/L)	0.133 (0.111)	<0.001
	ECOG=1	-0.400 (0. 048)	<0.001
	ECOG=(2, 3)	-0.163 (0.077)	0.033
	Corrected calcium (mg/dL)	-0.104 (0.019)	<0.001
	Log(# metastases)	-0.209 (0.032)	<0.001
	Time from diagnosis (days)	8.0E-5 (1.7E-5)	<0.001
	Baseline LDH (U/L)	-3.7E-4 (9.2E-5)	<0.001
	Lung metastases (yes)	-0.138 (0.046)	0.002
	Log(scale)	-0.107 (0.020)	<0.001
	SE: standard error, p: wald test (χ^2)		

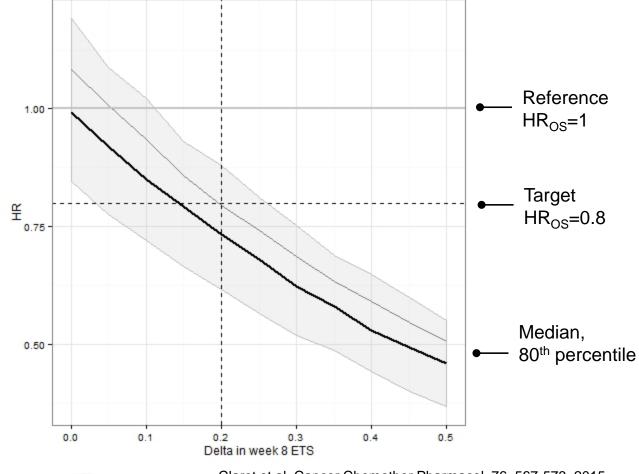
+ sign favorable; - sign not favorable OS in days


Claret et al. Cancer Chemother Pharmacol, 76, 567-573, 2015

OS Model Validation

CERTARA

- The model was evaluated using posterior predictive checks
 - OS distribution and hazard ratios (HR) were simulated (1000 replicates).

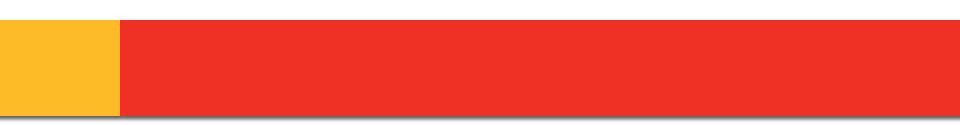


Claret et al. Cancer Chemother Pharmacol, 76, 567-573, 2015

Metastatic renal cell carcinoma (mRCC) OS model

- Model simulations
 - Predictive distribution of HR comparing an investigational treatment to sunitinib in a 600 patient study (300 per arm) as a function of difference in tumor growth inhibition (delta in week 8 ETS)

A 300 patients per arm Phase III study would have a 80% probability of technical success to show a HR < 0.80 (target product profile)



Claret et al. Cancer Chemother Pharmacol, 76, 567-573, 2015

Summary

- Week 8 ETS, an early measure of tumor growth inhibition, had satisfactory performance to predict OS in 10 clinical studies of a variety of treatments in metastatic RCC
- Clinically relevant ETS targets for future Phase 2 studies
 with investigational treatments were simulated
- One can play with the simulations to adapt to desired product profile, investigational treatment and number of patients in pivotal study
- This model and another one for PFS (published soon) are being used to support interim decisions in ongoing studies

Discussion

Clinical development questions to maximize POS

- POM-POC: Is the drug doing anything?
 - Demonstrate exposure-response with appropriate biomarkers, sensitive metrics or drug effect
- Is the dose/schedule right?
 - Take advantage of exposure variability to simulate dose response (efficacy and/or safety)
- What is the most informative Phase II study design?
 - Use an early TGI metric as endpoint
 - Assess target effect associated with desired OS improvement
- End-of-Phase II decision: Is the effect seen in Phase II worth it?
 - Simulate expected OS advantage based on TGI
- Phase III study design and conduct
 - Simulate probability of technical success
 - Support interim futility analysis based on TGI
- Use of longitudinal tumor size data and sensitive TGI metrics is much more informative than traditional endpoints
 - No regulatory issue as far as limited to support decision making
 - Has also been accepted to address PMR and avoid a clinical study

Acknowledgements

- Pharsight
 - P. Chanu, F. Mercier (now with Roche), P. Girard (now with Merck-Serono)
- F. Hoffmann-La Roche, Basel, Switzerland and Shanghai, China
 - K. Zuideveld, K. Jorga, J. Fagerberg, M. Abt
 - F. Schaedeli Stark, F. Sirzen, R. Gieschke, N. Frey
 - Bob Powell
- Genentech, South San-Francisco, CA
 - J.Y. Jin, A. Joshi and colleagues
- Pfizer, La Jolla and Sandwich
 - J. Zheng, Y. Pithavala, P. Milligan and team

